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INTRODUCTION 

The prel iminary phase of the investigation of the propagation charac-  
t e r i s t i c s  of a finite amplitude pressure wave, a s  pertaining to the conditions 
existing in  the exhaust of a rocket nozzle, has  been concerned with qualitative 
and, to  some extent, quantitative analysis of the predominant dissipation 
t e r m s .  These dissipation t e r m s ,  a s  evidenced by recent  developments, may  
contribute heavily to the nonlinear wave radiation of rocket exhausts. 

In this  phase of the investigation, emphasis was plzced en  pinpointir?m 6, 
by means of general  qualitative analysis, those regions of rocket exhausts in 
which the r a t e  of entropy production is maximized. Thus, the present  formu- 
lation is directed toward the analysis of those regions in which the physical 
p rocesses  a r e  highly i r revers ib le ,  with a consequent strong coupling between 
the mechanical and thermodynamic phenomena, 
in  which no entropy production occurs  a r e  automatically excluded from our 
consideration. 

It follows that those processes  

In t e r m s  of the mathematical formulation, the aforementioned approach 
implies  a strong coupling between the momentum equation (mechanical con- 
dit ions) and energy equation (thermodynamic conditions). The derivation of 
the  governing equations i n  Section I of this  report  resu l t s  in a wave equation 
(mechanical conditions) whose forcing function, in t e r m s  of entropy gradients,  
depends pr imar i ly  upon dissipation processes;  i. e . ,  entropy production rates .  
As a consequence, the present  approach tends t o  supplement the contemporary 
investigations on the subject.' 

The preceding formulation points to  the fact  that, subject t o  future  
experimentation and within the framework of this analysis,  the presence of 
Mach d i sc s  in a rocket exhaust nozzle may constitute the predominant acoustic 
propagation regions of the flow field, due to  the high r a t e s  of entropy produc- 
tion there .  
t empera tu re  difference having the effect of magnifying the phenomena. 

This is t r u e  i r respect ive of cold o r  hot flow conditions-the 

Other regions in which dissipation r a t e s  a r e  predominant, even though 
not quite of the same order  of magnitude a s  those in the Mach-disc transit ion 
regions,  a r e  the  oblique shock layers  formed in the rocket exhaust flow field. 
To analyze these  regions fo r  the case  of high p res su re - r a t io  rocket exhaust, 
recent  hyper sonic continuum mechanics developments have been employed and 
a r e  presented i n  Section I1 of this report, An analysis of power-law oblique 

1 
Refer to References and Bibliography. 
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shocks fo r  sma l l  angle of inclinations tends to  predict that the entropy close 
to  the axis of symmetry increases  rapidly, whereas  the p re s su re  remains 
quite uniform there. 
the axis ,  the temperature  must  be high and the density low. In this  formula-  
tion, the transition propert ies  a r e  used a s  boundary values for  the s imi la r i ty  
solution of the wave equation, 

Because of the much higher entropy in l aye r s  near  

In Section I11 of this report ,  the reflection propert ies  of the p re s su re  
waves emanating from a rocket exhaust have been studied through use  of cha r -  
ac te r i s t ics  in the physical and hodograph planes, with a view toward finding 
the point of coalescence of the p re s su re  waves, which a r e  reflected f rom the 
f r e e  boundary, 
tion of the shock wave shapes emanating from the rocket nozzle. 

These numerical  computations resul t  in a theoret ical  predic- 

Regions in  which entropy generation takes place through vortex in te rac-  
tion seem,  within the framework of this analysis,  to  be of l e s s e r  importance 
in supersonic flow. They only become p r imary  fac tors  in acoustic excitation 
in  subsonic flow, when no localized high-entropy production regions (i. e . ,  
shock f ronts )  exist. 

The formal  derivation of the forcing function, in  t e r m s  of the dissipation 
processes  presented in Section I, is based upon the assumption of the existence 
and continuity of the functions up to and including second derivatives a s  well 
as  nondeviation from thermodynamic equilibria of the medium. In reali ty,  the 
regions of high entropy-production r a t e s  a r e  v e r y  often distinguished by the i r  
departure  f rom thermodynamic equilibrium, especially in highly supersonic 
rocket exhausts and in the presence of near ly  normal  shock l aye r s ;  i. e . ,  
Mach discs.  
upon nondeviation from thermodynamic equilibrium usually is not sufficient. 
In such cases ,  the entropy function must  take into account the energy s ta tes  
of the individual particles (i. e . ,  a toms and molecules)  since the r a t e  of re lax-  
ation t ime to  achieve local equilibrium var ies ,  depending upon the molecular 
and atomic s t ructures  and the processes  involved. In regions of high excita- 
t ions,  thermodynamic equilibrium may not be fully established because 
relaxation t ime may be considerably longer than the rec iproca l  of the mean  
of the collision frequency of the gas particle for  the translational degree of 
f reedom. Under such conditions of chemical flow processes ,  the entropy 
function has to  be t reated by s ta t is t ical  methods. 

Under these conditions, the conventional entropy definition based 

. 

On the other hand, even when the chemical equilibrium is ve ry  near ly  
attained (i. e . ,  when the ra te  of dissociation of molecules into atoms can be 
assumed to  be equal to  the ra te  of production of new molecules by recombina- 
tion), there  i s  a marked difference in the i r revers ib i l i ty  of the process  when 
t ransmiss ion  through a shock wave occurs .  
quantitative analysis of such t ransmission phenomena f o r  binary collisions is 
presented f o r  two different values of the m a s s  f ract ion parameter .  

In Section IV of this  report ,  a 

F o r  

- 2 -  
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comparison purposes,  the t ransi t ion values of entropy production fo r  f rozen  
flow (i. e . ,  chemically iner t  flow) also have been included. 
entropy production is  considerably higher when dissociation and recombina- 
tion take place, even under the conditions of chemical equilibrium, 
addition, the entropy production ra te  i s  a strong function of the m a s s  fraction; 
i. e . ,  of the rat io  by weight of a toms dissociated to  the total  weight of a toms 
and molecules. However, since this  m a s s  fraction depends explicitly upon 
the g a s  tempera ture ,  it follows that entropy production in a rocket exhaust 
tends to  be a strong function of temperature.  

It is seen that 

In 

Within the framework of this analysis, the marked difference between 
the chemically iner t  (cold) flows and dissociation and recombination phenom- 
ena (higher tempera ture  flows) can be formally regarded a s  contributing 
significantly to the acoustic propagation of the m ~ d i i j ~ m ~  
computations i n  Section IV, this  dependence upon the tempera ture  and Mach 
number of the rocket exhaust becomes self -evident. 

F r o m  the initial 
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I. FORCING FUNCTION F O R  F I N I T E  AMPLITUDE 
PRESSURE WAVE GENERATION 

A volume, V,  i s  considered to  consist of an  acoustic medium in a 
stationary s ta te  in which a smal le r  volume, v , is so imbedded that v consis ts  
of a violently disturbed medium. 
thermodynamic variable,  the same i s  not t r u e  fo r  the disturbed volume v due 
to the nonequilibrium states .  T o  circumvent this difficulty in a formalis t ic  way, 
the p re s su re  function is defined a s  being made  up of s ca l a r  functions p1 and 

ing the nonisentropic processes  in v ,  
vanishes identically in the volume V and exis ts  only in v. 

While in  V the entropy is a well-defined 

F ~ ,  the f i rs t  r.alPt;nn n n l x r  t~ i c e ~ t r ~ p : c  ~h=p,g=s  i~ v, = ~ i  t h e  ~ e c ~ n d  describ- * u-U"*"b "*I* I 

Note a l so  that the velocity vector  

F r o m  the equations of motions we have 

a a a - (pi) t - (pu .u . )  = - ( U i . )  
a t  ~ X J  1 J axj J 

a u i  a aT ae ae 

at axj axj axj axj 
- t - ( k - ) + Q  p - t  puj- = i j  

where 

xi 

t 

P 

ui 

ui j 

e 

= Cartesian space -variable component 

= t ime 

= density 

= Cartesian velocity component 

= s t r e s s  tensor 

= internal  energy 

- 5 -  
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T = temperature  

Q = heat sources  

S = (entropy) 

For the case  of a homogeneous and isotropic medium we have 

2 

where Xi,  equals the s t ra in  ra te ,  6 i j  equals the Kronecker 6 ,  and p. equals 
the viscosity coefficient. 

When the medium in question is  not a function of tempera ture ,  then, 
(under thermodynamic equilibrium conditions) the energy equation is  uncoupled 
f rom the remaining equations of motion, and mechanical conditions dominate 
its behavior, 
e s s e s ,  this  uncoupling of the equations of motion may  lead to physically 
questionable results. 
tion r a t e s  a r e  considered, such uncoupling seems  to  be unwarranted. 

However, in the case  of violent physical and chemical proc- 

In th i s  formulation, when high-energy entropy produc- 

Next, the continuity and momentum equations a r e  combined into one 
Using the definition of the p r e s s u r e  function for  the wave equation form. 

stationary and disturbed regions, the momentum equation becomes 

with 

Now, by cross  -differentiating the continuity and momentum equations 
with respect  t o  t a.nd xi respectively, and by subtracting, the following will  
resul t  : 

- 6 -  
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Now let  

a - 
a xj P U j  

a ui auj auj 
P U j  - t PUj - (puj)dxj - axi a xi  

where the two las t  identical t e r m s  cancel each other.  Then, note that 

aurn 
"ijk nmk j ax, E u -  - - -  

with Eijk being the alternating tensor .  Note that in vector ia l  notation 

can be writ ten where 

4 

u = velocity vector  

- 
2: = vorticity vector  

Again, for t.he nonisentropic region v 

in which h equals enthalpy. 
equation ( 6 )  becomes 

Under these conditions, the wave equation in 

1 
2 

Here,  ho = h t - uiui r e fe r s  to total  enthalpy. In vectorial  fo rm this becomes 

- 7  - 
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4 a 
a xj 

where Fi = - (+ i j )  represents  the viscous t e r m s .  

represents  the required relation. 

Equation ( l o ) ,  

(10) 

therefore ,  

This equation is now formal ly  simplified by focusing attention on entropy 
In this  case ,  note that the  total  enthalpy t e r m s  represent -  production regions. 

ing the stagnation tempera ture  remain constant even when cross ing  a shock 
wave. 
a supersonic rocket exhaust, th i s  t e r m  m a y  conceivably be disregarded.  

Since this  would correspond to  the highest entropy jump in the case of 

In a formalis t ic  manner,  the viscous t e r m  m a y  a l so  be looked on as 
contributing to  the entropy production gradient through the  energy equation, 
since,  in the absence of heat t r ans fe r  and heat sources  

pT-= dS (P 
dt 

where @ is the dissipation function, governed by viscosity.  

Thus, the following equation i s  obtained: 

a P  + - -  4 

. f = ( p u x G - u -  a t  

+ 
where the function f in the forcing function represents  the contribution of 
density gradient and vorticity,  and the second pTVS rep resen t s  entropy 
production gradients coupled with the tempera ture  and density functions. 

F o r  the case  of highly supersonic flow, attention is concentrated on the  

In any case,  the generating function fo r  the equation can be 
shock layer regions where the entropy jump seems  to  be the grea tes t  con- 
tr ibuting factor. 
writ ten in the form 

- 8 -  
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where the integral  i s  taken over the disturbance region, and the re ta rded  
potential solution i s  implied. 

It should be noted that this  formalist ic derivation holds t r u e  when the 
dependent var iables  (i. e . ,  the physical p rocesses)  a r e  continuous up to and 
including second derivatives. Thus, shock-layer conditions may be con- 
s idered i n  the neighborhood of the shock wave but not in the shock itself. It 
follows that the contribution of the jump conditions must  be t rea ted  a s  a 
special  case.  

It is a lso apparent that the unknown forcing function cannot be found 
f r o m  eqhation (13),  and that, for  i t s  properties and variations in the neighbor- 
hood of a shock layer ,  available solutions in fluid flow theories  must  be 

sonic rocket exhaust. Thus, use is  made of the available solutions i n  which 
the propert ies  of these unknown functions a r e  coupled intrinsically with the 
energy equation to  obtain a physical picture of the regions considered. 

i j t i l i z p d  to a n n l v  t h e m  to  case of 7,rzriable distyibuti=ns ir, 2 highly hype?- -rr-i ------- 

- 9 -  
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11. THREE- DLMENSIONAL HYPERSONIC 
ENTROPY  PRODUCTION^ 

In this  section consideration is given to  the investigation of conditions 
governing entropy production in regions adjacent t o  the shock layer ,  when the 
angle of inclination of the wave i s  small  with respect  t o  the s t r eam direct ion 
a t  infinity. 
symmetr ic  flows are given by 

The par t ia l  differential equations governing the nonlinear axis  - 

ap 1 3  - t - - ( p u r )  = g 
a t  r ar 

- a v  t v -  a v  - -  1 a p  - g l ( u l .  z) 
a t  a r  p a r  

as as 
-+v-= a r  g" ( U l ,  2) a t  

with the  boundary- conditions behind the shock ys being given by 

The t e r m s  g, g ' ,  and g" on the right-hand side of equations (14) a r e  of 
second-order  magnitude and can be neglected in accordance with the hyper- 
sonic disturbance theory behind the shock wave. 

1 
Based upon References 1 through 5. 

- 11 - 
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2 
R ' t  - R b '  t:]= 0 

where the prime and dots signify derivatives with respec t  t o  q and t, 
respectively.  F o r  a self - s imi la r  solution to  exist ,  the  t i m e  dependent t e r m s  
must  be a constant. 
t o  a power-law ys - X u  . Once the exponent u is specified, P, R, and V a r e  
determined completely from the equations 

This cal ls  fo r  the shock-layer equation corresponding 

- 12 - 

> 

F o r  a strong shock, the boundary conditions may  be reduced by omitting 

a 2 /  dy, 
the  t e r m s  of order (z)' to  resul t  in 

2 

- -  Y+ 1 Po; vs = - y : 1 (d:$ - 
p s -  - - y -  1 Po(dt) : p, - Y -  1 

2 dY s 

By introducing a t ransformation of var iables  

V r 
, v =-; q = - 

Ps P S  vS Y s  
P , R =-* P p = -' 

and by anticipating a se l f - s imi la r  solution, it is assumed that  

P = Ps p(q) ;  P = P, R ( ? ) V  = vs yq) 

as a consequence of which we obtain, f rom equations (14) 

SID 65-933 



c 1 

y -  1 P '  1-cr y +  1 
2 RV 0- 2 

f---- - = o  

with the  b=z?,dary c=nditicns P(!) _R1(1) = V(l! = 1 at q = 1. Except in ;1 few 
c a s e s ,  an explicii. solution to  the problem cannot be  obtained. 
integration must  be c a r r i e d  out inward f rom the shock at 1 = 1. 

Numerical 

The investigation of solutions indicates that, c lose to  the axis  of 
symmetry ,  the entropy tends to  infinity, whereas  the p r e s s u r e  is  finite. 
is because,  in the neighborhood of the axis ,  the gas  has  passed through a 
much s t ronger  par t  of the shock wave (Mach d isc)  at an  ea r l i e r  t ime  and thus 
has  gained a much higher entropy, Since, to  this  approximation, the entropy 
function is  conserved on the streamline (except a t  the shock t ransi t ion 
where it takes  a large jump),  this higher entropy gain pe r s i s t s  and 
is c a r r i e d  by the fluid par t ic les  along the i r  paths. 
higher entropy, the tempera ture  in  l ayers  near  the ax is  must  be ve ry  high 
and the density ve ry  low, since the p re s su re  the re  is finite. Thus,  due to 
low density, the fluid acceleration produces negligible p r e s s u r e  gradients. 
Consequently, the p re s su re  remains quite uniform throughout the layer.  

This  

Because of the much 

The numerical  integration of equations (18) which points t o  the presence 
of the entropy layer  cannot be extended to the analysis  of this  layer  since it 
i s  generated by almost normal  shock conditions in the neighborhood of flow 
axis (blast  wave analogy with no body present).  
s t rong,  blunt, shock layers ,  with the consequent high-entropy production, 
mus t  be t rea ted  in a separate  manner. 

Thus, the conditions of 

- 1 3  - 
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111. REFLECTION PROPERTIES OF PRESSURE WAVES 

The determination of flow properties and entropy production r a t e s  in 
a supersonic rocket exhaust f o r  chemically iner t  flows (using the method of 
charac te r i s t ics  and the equations of continuum mechanics exclusively), in 
the fo rm of an  explicit approximate expression in the forcing function of the 
nonlinear wave equation, cal ls  for knowledge of the shock-layer  shape f o r m -  
ing in the wake of the underexpanded nozzle. 
the p r e s s u r e  waves formed in  the exhaust gas  and emanating f rom a supe r -  
sonic ax isymmetr ic  nozzle can be studied to a high degree of approximation 
by the numerical  methods of character is t ics .  

The reflection proper t ies  of 

In this formulation, the method of charac te r i s t ics  has  been utilized to 
investigate the reflection pat terns  of the p r e s s u r e  waves f rom the f r e e  
boundaries.  
coalescence pat tern of p r e s s u r e  waves af ter  reflection from the f r e e  bound- 
a r y  h a s  taken place. This  approach allows for  the analytical  numer ica l  
t racing of the intercepting shock patterns to be approximated a t  a l a t e r  
stage, if so des i red ,  by an  analytical expression,  based upon numerical  
resu l t s  , 

Special emphasis  has been placed upon determining the 

The physical considerations of the phenomena a r e  as follows, As the 
gas  acce le ra t e s  f rom the sonic condition at  the throat  of the nozzle, expan- 
sion fans a r e  formed and those fans directed outward and upward s t r ike  the 
je t  boundary. Since this i s  basically a f r e e  boundary, the expansion fans 
reflect  f rom it in the opposite sense and become compression waves.  More-  
over ,  due to the convex form of the f ree  boundary, these compress ion  waves 
eventually coalesce into a plume shock layer .  
c a r r i e d  out for  very  high p res su re  ratios to accentuate the effect; but the 
method remains  identical f o r  all  higher than c r i t i ca l  p r e s s u r e  rat ios ,  and 
extension to lower p r e s s u r e  ratios is immediate ,  

The computations have been 

The computations a r e  based upon a cylindrical  coordinate system 
( i . e . ,  x ,  r )  where the x axis is coincident with the axis of symmetry  of the 
flow and, if P and p indicate pressure  and density in addition to u and v (the 
velocity components along the x and r axes  respectively),  Eu le r ' s  equations 
a r e  given by 

- 13 - 
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and the equation of continuity i s  

The total  enthalpy, hT,  i s  constant along each s t reamline and the equation 

is  valid everywhere, while the entropy, s, is  represented by the equation 

as 
t v -  = 0 

ar 
as 
ax u -  

and i s  valid everywhere except for passage through a shock wave. 

The velocity of sound, C,  for the general  ca se  along a s t reamline is  
given by 

The relation between p r e s s u r e  and density in an ideal gas having C P and 
C, constant is  given by 

- Pi - -  
p i" 

where Pi, p i ,  and si a r e  the initial conditions and Y = Cp/Cv.  
Because of equations ( 2 2 )  and (23), the initial conditions and, therefore ,  C 
remain constant along each s t reamline.  
following relations a r e  obtained 

F r o m  equations (24)  and (25) the 
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The relationships among entropy, to t a l  enthalpy, and vorticity component 
normal  to the s t reamline for  axially symmetr ic  flow are given by 

( ~ x  c u r l  o z = - v (g - e) a r  

and, there  for e ,  

1 ahT C2 as - - - -  t-- 
ax a r  v an yRv an 
av au - - - -  

By combining equations (20) to (24), (26) and (27) the expression 

is  obtained. It is  convenient a t  this point to define the.functions 

Y-1 GX = - r v  (1-w 2 ) 

v - u  

with w = v / v l ,  i. e. , ratio of the loca l  velocity to limiting velocity. 
Utilizing equations (31), (32), and (33), equation (30) can  be put into the 
following form 

- 17 - 
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Following the procedure of Ferri (References 6 and 7), w e  define 

H = 1 - u  2 2  /C 

L = 1 - v 2 / c 2  

2 K = - UV/C 
and, 

Thus,  equation (34) may be writ ten 

H+, t 2K+ xr t LJIrr t N = 0 

and 

d+X dr  - -  - 
dx $ x x f  $xr dx 

+r d r  

The simultaneous solution of equations (38)  through (40) wi l l  yield 

Upon substitution of 

u = v c o s e  

S = V Sin 8 

C = V Sin p. 

(39)  

(40) 

(43) 

(44) 

(45) 
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equation (41) t ransforms to 

= tan (e*p) (E) I,II 
The positive sign r e f e r s  to the f i rs t  family o r  left-running charac te r i s t ics ,  
whereas  the negative sign refers to the second family o r  right-running 
charac te r i s t ics .  

Equation (42) combined with equation ( 3  1) and the vorticity relation 

1 ds  
Grad S = - - 

C YR yR dn 
( cu r l  C ) x D  - 1 - -  

yield 

Sin y Sin8 tanp  dx Sin3 p dx S 
W * tan p d e  - cos (e*p) . r Cos(8*p) dn yR = o  -- - *  

(47) 

The Mach number i s  a m o r e  convenient parameter  than the nondimensional 
velocity ratio W ;  therefore  

dW - dV - dM - - -  - w M ( l + t M )  Y - 1  2 

and equation (48) t ransforms into 

dM Siny Sin8 dx 
* de  - c o s  (e+) T 

(1 t ~ 2 )  M tanp 
2 

- 0  S dx 
tan p Cos ( 8 * y )  yR dn 

- - -  SinJ p 

Now, since 

1 
Sin p = - M 

m 
c o s p  =- M 

1 
tan p = 

E 

(49) 

(Equation 51 cont next page .) 

- 19 - 
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YR 
Y- 1 

- -  - C 
P 

COS (e+) 
Sin 

and, therefore ,  equation (50) becomes 

Following the nomenclature of Reference (8), equations (46) and (52) may be 
expressed  in  finite difference form. 
char  ac teri st ic , 

F o r  the f i r s t  family o r  left-running 

A e  = AAM - BAx t CAS (53) 

A r  = Ax/K (54) 

F o r  the second family o r  right-running charac te r i s t ic ,  

A 0  = -AAM t bAx - CAS (55) 

A r  = hAx. (56) 

The preceding formulation defines the general  scheme of the procedure 
undertaken to analyze reflection propert ies  of p r e s s u r e  waves in  the exhaust 
nozzle, based upon finite difference methods,  Fur ther  details  are based 
upon References 8, 9 and 10. 
applying Prandtl-Mayer flows to the corner  regions of the nozzle w i l l  be 
made. 

However, specific mention of the procedure of 

If equation (39) i s  employed to compute the flow conditions in  the 
immediate vicinity of a sharp  corner ,  e .  g . ,  the lip of the nozzle, the t e r m s  
containing dx and ds  vanish and equation (52) reduces to 

h i 5  
M2) dM M (1 t 5’ * d e  = 

and, upon integration, yields 

G5 t Const 

- 20 - 
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Now, the Prandtl-Meyer angle (v), through which the s t r eam tu rns  i n  
expanding from a sonic condition to a supersonic Mach number,  is 

Corner  type flow occurs  in the vicinity of the nozzle lip (Figure l ) ,  and 
the amount of turning i s  determined by the initial and final Mach number at 
the nozzle l ip.  The final Mach number is  determined f rom the rat io  of the 
ambient to total chamber p re s su re ;  and since, for  isentropic flow, this  
p r e s s u r e  rat io  i s  directly a function of the final Mach number,  Y, it can be 
expressed  as 

Equation (59)  also indicates that v is a function of the Mach number.  
fore ,  knowledge of the p r e s s u r e  ratio i s  equivalent to knowledge of the final 
u and, hence, knowledge of the total turning angle of the flow around the 
nozzle lip. 

There-  

The boundary Mach number becomes infinitely la rge  as the 

JET BOUNDARY 

/ ,SHOCK 

- -  
CENTERLINE -7- INVISCID STREAMLINES 

Figure  1. Physical Characterist ics of the P r i m a r y  Wavelength of 
a Supersonic J e t  f r o m  a Contoured Nozzle 
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boundary p res su re  i s  reduced; in  this  ca se ,  the Prandt l -Meyer  angle c o r r e -  . -  
sponding to the boundary Mach number would 
of v defined by 

" MAX = @ -  
approach the maximum value 

At very  low or very high tempera tures  and p r e s s u r e s ,  the assumption of a n  
ideal continuum fluid i s  not likely to be valid; however, the resu l t s  may be 
used as a guide. 

It i s  noted f rom the resu l t s  of this analysis  that, as the p r e s s u r e  ra t ios  
tend to infinity (F igure  2 )  the angle between the nozzle t i p  and the je t  
boundary grows to such an  extent that a flow r e v e r s a l  phenomenon is  
encountered. The approach includes provisions for rotational flow, of 
p r imary  importance in  entropy generation. 
been considered: 
expansion, entropy charges are accounted for in the region bounded by the 
plume. These charges are a consequence of the presence of vorticity and 
a r e  a lso due to the Rankine-Hugoniot jump conditions a c r o s s  the shock. 

The internal  nozzle flow has  not 
even when the nozzle is contoured to provide an  isentropic 

The character is t ic  solution w a s  programmed for the IBM 7090 com- 
puter with provisions to obtain cathode-ray tube (CRT) plotting of the 
character is t ics ,  s t reamlines ,  and constant Mach l ines .  The computations 
were  c a r r i e d  out along left-running charac te r i s t ics ,  start ing at the nozzle 
tip. The number of divisions a t  the nozzle exit and tip is directly a function 
of the accuracy desired.  Provisions were  a l so  made  to increase  the number 
of divisions i n  the flow field to compensate for  the divergence of the original 
character is t ics  a s  the tendency of divergence inc reases .  

The applicability of the character is t ic  solution is l imited to the appear-  
ance of the Mach disc in  the flow which cannot be accounted for f rom the 
present  formulation; however, the l inear  theory provides a guide to the 
applicable range of the solution, since it ca l l s  for  the diameter of the je t  at 
the p r imary  wave length to be equal to the nozzle diameter .  This condition, 
therefore ,  proJides a l imit  of the applicability of the solution, and i t  de te r -  
mines the extent of downstream validity of the charac te r i s t ic  plot before the 
subsonic region behind the Mach disc i s  reached. 

The region of entropy production in  the wake of the rocket exhaust for  
high p res su re  rat ios  obtained f rom the aforementioned charac te r i s t ic  Solu- 
tion has  been programmed with provisions to obtain CRT presentation of the 
character is t ics ,  s t reamlines ,  and constant Mach number l ines.  

SID 6 5 - 9 3 3  
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Figure 2. CRT Plots  of Streamlines and Left-Running Charac te r i s t ics  
and Coalescence Points Forming the Shock (Sheet 1 of 4) 
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Figure  2 .  CRT Plots Of Streamlines  and Left-Running Charac te r i s t ics  
and  C o a l e s c e n c e  Points Forming the Shock (Sheet 2 of 4) 
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Figure 2 .  CRT Plots of Streamlines and Left-Running Charac te r i s t ics  
and Coalescence Points Forming the Shock (Sheet 3 of 4) 
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. 

Initial computations were functions of the choice of nozzle (i.e.,  for a 
conical nozzle, the nozzle spherical surface is  chosen, whereas  f o r  a bell 
nozzle, the exit plane is  utilized); however, any a r b i t r a r y  right-running 
character is t ic  with known flow conditions m a y  be used as an input to  the 
program. 

Assuming the nozzle exit conditions (e .  g . ,  x, r ,  M, 8 ,  and s) are 
known, the exit plane is  divided into an  a r b i t r a r y  number of equal pa r t s ,  
depending upon the accuracy desired. 
right-running charac te r i s t ics  emanate. In the vicinity of the nozzle lip, 
corner- type flow prevai ls  and the initial and final Prandtl-Meyer angle may 
be computed; this,  in  turn,  is divided into a number of equal pa r t s  for use  i n  
the program.  

Through each such point, left- and 

Examples of the type of solutions of programmed analysis have been 
computed, The present  resul ts  have been obtained using the weak shock 
assumption. CRT plots of streamlines and corresponding left-running 
charac te r i s t ics  a s  functions of R /Ro  and x /xo  a r e  shown i n  F igure  2 for  
var ious f r e e  s t ream conditions. The data l isted at  the top of each 
s t reamline plot indicate the conditions under which the case  was computed. 
F o r  convenience, the nomenclature is defined he re  as follows: 

GAMA - -  Ratio of specific heats  

P T / P A M B  - -  Ratio of jet  total p r e s s u r e  to f r e e  s t r eam ambient 
pr e s sur  e 

THETAN - -  Angle of nozzle l ip  measured  from horizontal in  radians 

MESH - -  Imposed grid size on radius of nozzle 

LIP - -  Imposed divisions on total  turning angle 

Investigations regarding the Mach disk and second Mach diamond are 
logical extensions of the present analysis which may be used as a bas is  for 
a secondary approach in  the vicinity of the subsonic segment of the flow 
since,  in this region, the present approach of the method of cha rac t e r i s t i c s  
does not apply. 

Some considerations of the flow behind the Mach d iscs  and their  
entropy productions for the case  of chemically iner t  (cold) flows and chemi-  
cally reacting (high-temperature) flows a r e  given in  the next section of this  
repor t .  

- 2 7  - 
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% 

IV. CHEMICALLY REACTING FLOWS 

FLOW CHEMISTRY IN HYPERSONIC SHOCK LAYERS FOR NONEQUILIB- 
RIUM GAS DYNAMICS~ 

In the presence of strong shock waves in hypersonic flow, the dis-  
sociation of gas molecules often occurs and makes a marked contribution to 
entropy production in the shock region. In addition, the nonequilibrium 
state  of the gas  is  often c a r r i e d  along the s t reamline into the flow field be- 
k k d  the shock, causing the chemical nonequilibrium conditions to pe r s i s t  
in the flow region. 
of these  phenomena is  presented in this section as  a contribution to higher 
entropy production through collision phenomena and a consequent chemical 
flow instability which may  contribute to aerodynamic sound generation. 

A short  summary of the basic thermodynamic principles 

The thermodynamic state of a gas  mixture at  a point in a nonuniform, 
unsteady field is determined completely by the local values of the two v a r i -  
ables p and T ,  o r  p and T ,  i f  all internal processes  take place rapidly 
(i. e . ,  i f  the relaxation t ime i s  short), in which case ,  the thermodynamic 
equilibrium is attained locally. 
va r i e s ,  depending on the molecular and atomic s t ruc ture  and the processes  
involved. F o r  a specified t ime scale in  par t icular ,  thermodynamic equilib- 
r ium may not be fully established. 

The r a t e  of approach to local equilibrium 

In many g a s  dynamics problems, thermodynamic equilibrium t ime can  
be considerably l a rge r  than the reciprocal of the mean of the collision f r e -  
quency of the gas particle for the translational degree of freedom. In this 
c a s e ,  i t  is possible to t rea t  each component in different internal s ta tes  as 
an  isolated thermodynamic system whose exchange of energy with the other 
sys tems i s  slow. Such a treatment can  be c a r r i e d  out, however, only i f  
the equations specifying the r a t e  of exchange, excitation, o r  de-excitation 
of the internal processes  a r e  fully known, 
a ted with the excitation and de-excitation processes  of a molecular rotation, 
vibration, dissociation (in air, dissociation involves not only the simple 
decomposition and recombination of the oxygen and nitrogen molecule, but 
a lso the formation of NO and other components), and ionization differ so 
widely that i t  may be possible to treat  the principal nonequilibrium processes  
one at a t ime.  

Nevertheless,  the r a t e s  assoc i -  

1 
Based upon References 1, 3, 6, I ,  8, and 9. 
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r 

In most  works on flow chemistry,  the rotational, vibrational, and 
electronic states of the atom and molecule a r e  assumed to be in equilibrium 
a t  the translational temperature  T. This  assumption is  adopted here .  

The mass  fraction of each gas  species  i is represented by Ci. Con- 
sidering only chemical nonequilibrium, the thermodynamic state of the gas  
may  be specified by the var iables  p, T,  and Ci  s .  
the gas  sample completely, the init ial  values of these var iables  must  a l so  be 
specified. 

Of course ,  to distinguish 

By definition 

C. = m.n. ,  ri; c = 1, n = n, p = F m n 
1 1 1  1 i i i  i i  

where ni i s  the number fraction of the species  i, and m i  is the m a s s  per  
par t ic le  of the species i. 

The equation of state for a perfect gas  i s  

P = nkT = = P T 7 R . C .  
i pi 1 1 1  

where p. is  the par t ia l  p re s su re .  Also 
1 

- &  
Ri - M 

where M is the molecular weight and & t h e  universal  g a s  constant, 
(R equals 1.98717 cal/mole-OK). 

The specific internal energy of the gas  i s  

with 

where (Cv)io is 
absolute zero) ,  
volume. Thus, 

e = W . e  
1 i i  

e - e  = J ( C ) . d T  
v 1  0 0 

i i  

the heat of formation per  unit m a s s  of the species  (at  
and (Cv)i  is the specific heat of that  species at  constant 
by definition (Cv)i does not include heat of formation. 
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And now 

h. = J Cpi dT t (h.) 1 0  1 
0 

Note that (hi)o equals (ei)o and that ei and hi are functions of tempera-  
tu re ,  T, alone, since each species, taken by itself, is a calor ic  perfect gas .  

Since each component of the mixture considered has  a uniform tem-  
pera ture  and p r e s s u r e  and the prciceases of exchange with other sys tems 
a r e  slow, the re  exis ts  an  entropy function Si: 

T dS = de. f p. d(L) 
f' i/ i 1 1 

According to Gibbs, a specific entropy for the mixture can  be defined 
as 

which is  completely specified by p, T, and Ci. 
not generally the same as the ordinary one used in thermodynamics;  i. e . ,  

This definition of entropy is 

dQ 
T PATH 

which can be defined by p, T ,  and Ci  only for  a g a s  in  full thermodynamic 
equilibrium since the integrals depend on the path. 
equilibrium does 

Thus,  only i n  full 

SE = s (71) 

Moreover,  in  full  thermodynamic equilibrium, the re  exis ts  a f ree  energy, F, 
and the thermodynamic potential function, G ,  s o  that 

F = E - T S  

G = H - T S  

The second l aw of thermodynamics is  that for any process  with volume 
and tempera ture  fixed 6 F I 0. Alternatively, with p and T fixed 6 G 2 0. 

- 31 - 
SID 6 5 - 9 3 3  



/ 

N O R T H  A M E R I C A N  A V I A T I O N ,  INC. SPACE and INFORMATION SYSTEMS DIVISION 

The stoichiometric equations 2H2 t 0 2 ~ 2 H 2 0 ,  2N t N2, etc.  , may 
be generalized into the form 

( j )  
where v i  is  the number of moles of the species  Ai, which i s  required for the 
completion of the reaction. F o r  example, in  the equation 

2H2 t 0 =2H20 2 

V I  = 2 ; A1 = H2 1 

v2i = 1 ; A  = O2 2 
(74) 

In equilibrium, the gas composition i s  determined completely by 
p and T. 
K associated with the par t ia l  p re s su re ,  pi, so  that 

F o r  each stoichiometric equation there  is  an  equilibrium constant, 

V N i = K (T)  q (Pi) 
1 

(75) 

which i s  only a function of T .  
stoichiometric equations. 
number of the same atomic species  must  be conserved in  chemical  reaction, 
the composition Ci, o r  the par t ia l  p re s su re  pi, can  be completely de te r -  
mined. The fact that the root mean square of equation (10) is  independent of 
pi (the m a s s  action l a w )  may be anticipated from equation (8) which may be 
rewri t ten 

The re  are as many equilibrium constants as 
With the aid of the requirement that the total  

NB 
v!' B 

NA 
v;Ai-. i= 1 ,j=1 J j 

where V! and v;' a r e  now both posit ive,integers,  because in  equilibrium the 
S ra te  of conversion f rom Ais to B i s  must  balance that f rom Bi- to Ais. 

fo rmer  i s  proportional to the probability of finding the react ion par tners  
together; thus, it i s  proportional to (Bj) 
tional to (pi)";, and it follows that K should be independent of the p re s su re .  

1 
The 

V U  J. Similarly,  the la t ter  is propor-  
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The manner in which K depends on T can be deduced f rom c lass ica l  
thermodynamics.  
ently computed in  t e r m s  of the partition function in s ta t is t ical  mechanics,  
using parti t ion functions determined separately for t ranslat ion and rotation, 
vibration, and electronic excitation from the quantum atomic theory.  

In pract ice ,  the absolute value of K can be most  expedi- 

In the standard treatment of the equilibrium constant, the fact that for 
a specified volume and temperature,  the f r ee  energy, F, attains a minimum 
i n  equilibrium ( d F r O ) ,  o r  alternatively that for a specified p and T ,  the 
potential G becomes a minimum i n  equilibrium ( 6 C  20) may be used. 
alternative derivation of K (T)  versus T may be obtained, based s t r ic t ly  on 
the assumption of equilibrium, and bypassing the use  of the minimum 
principle and thus,  the second l a w  of thermodynamics.  

An 

The preceding statist ical  thermodynamic model allows one to take into 
account the nonequilibrium entropy production i n  regions where violent 
physical p rocesses  occur.  It would seem only reasonable that, in the c a s e  
of aerodynamic sound generation f o r  rocket exhausts where strong shock 
waves of high intensity occur ,  these processes ,  which cannot be t rea ted  by 
means  of continuum fluid mechanics alone, should be investigated. 

CHEMICALLY REACTING GASES 
! 

When flow chemistry is  taken into consideration, the dynamic behavior 
of any gas  var ies  between an infinitely fast  reaction (chemical equilibrium) 
and an  infinitely slow reaction (chemically iner t  flows). It then follows that 
the nonequilibrium behavior of the g a s  will always be intermediate between 
these  two ext remes .  In comparing entropy productions of chemically r eac -  
ting f h w s  in equilibrium to those of chemically iner t  flows, i t  i s  of special  
i n t e re s t  to consider the transit ion propert ies  of the gas through a highly 
i r r eve r s ib l e  Mach disc of a rocket exhaust. 
indications of the difference in order of magnitudes of hot (reacting) and 
cold (nor,l*eacting) flows a s  far a s  the entropy production through a Mach 
disc transit ion is concerned. 

This comparison should give 

The following analysis of chemical flow kinetics (References 13 
through 23) ,  under the assumptions of a binary collision model ( i . e .  , binary 
collision of a toms ar?d molecules predominates and determines the thermo- 
dynamic gas s ta te) ,  i s  presented to give a qualitative picture and quantitative 
analysis  of the contribution of chemically reacting flows to the entropy 
production where transit ion through a Mach disc of a rocket exhaust is  
c onc erned.  

Assuming that the dissociation of the molecule, Am, into two atoms,  
A,, i s  caused by a collision between the molecule, Am, and a second body, 
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and that recombination follows a simultaneous encounter between two atoms,  
A,, and the same second body, the stoichiometric equation describing the 
flow is given by the equation (Reference 20) 

K, I 
A t X e 2 A  t X  

a K r  m 

where the quantity, X,  denotes the second body. 

F o r  this  reaction the stoichiometric coefficients are 

1 1  - 1  I I  I I  

"m = o  v a = 2  "x - 

where the v i  a r e  defined in relation 74. 

Since the quantity, X,  is not affected by the chemical reaction 
(Reference 20) 

cx = ca t cm = 1 

2Ma = Mm 

This follows from the fact  that the molecular weight of X i s  the mean 
molecular weight -of the mixture,  namely, M, / (  1tCa) .  

The ra te  of production of the atomic species ,  da, i s  given by 
(Reference 20) 

where M 3  

K =E[%] P 1-Cae 

where subscript e r e f e r s  the condition a t  chemical equilibrium, 

(77) 
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F o r  the ideal dissociating gas,  the equilibrium composition, Cae, is 
given by (Reference 17) 

2 Pd [- 4 
(81) - - - exp Cae 

1-Cae 'e 

where 
the ideal dissociating gas  (Reference 17) and Dm equals the dissociation energy. 

Pd equals the character is t ic  dissociation density which is  constant fo r  

Substitution of equation (82)  into equation (78) resu l t s  in 

The species  continuity equation for the atomic species  may now be writ ten in 
the form (Reference 20) 

PU - dCa dx +z d (PCaUa) = t Mm exp I- el - ca 2 ]  (84) 

As mentioned previously, t may be interpreted a s  a character is t ic  reaction 
t ime with the following significance. 

If the reaction occurs  very rapidly, the value of Ca w i l l  differ only 
slightly f rom the local equilibrium value. In the limiting case ,  a s  t approaches 
zero ,  the bracket on the right-hand side of equation (84) must  approach zero .  
The limiting case  in  which t is effectively ze ro  (infinitely fast  react ions)  is  
called equilibrium flow, and the composition of the mixture is  governed by 
equation (8 1). 

F o r  infinitely fas t  reaction, the dynamic behavior is very slow in  com- 
par ison with the dissociation and recombination r a t e s  and resu l t s  in  a balance 
of the la t ter  throughout the flow. 

At the other l imit ,  t may be so la rge  (very slow reaction) that the r a t e  
of production, ba,  is effectively zero. 
ically iner t  and i s  usually re fer red  to a s  a chemically frozen flow. 

The gas may then be considered chem-  
In this 
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case ,  the dynamic behavior of the gas  i s  so rapid i n  comparison to the chem- 
ical  changes that the la t ter  exer t  l i t t le influence on the chemical composition 
of the gas  mixture. 

In any analysis of chemical nonequilibrium flow, the chief difficulties 
a r i s e  f rom the nonlinear coupling between the gas  dynamic equations and the 
chemical  relaxation equation. However, in the two ext reme c a s e s  of frozen 
o r  equilibrium flow, the chemical relaxation equation is reduced to a very  
simple form,  thereby simplifying the analysis.  

GENERAL EQUATIONS O F  CHANGE 

The equations (Reference 20) governing the Mach disc (normal  shock) 
transit ion of a mixture of a toms and molecules which behave individually as 
perfect gases ,  a r e  as follows: 

Mixture Continuity Equation 

The mixture continuity equation 

which has  the f i r s t  integral  

pu = (pu), = m = constant 

Species Continuity Equation 
~~~ 

The species continuity equation for the ith species  i s  

dCi d pudx t - dx (PCiUi) = C;i 

where 

LL 

ci = m a s s  fraction of i th species  

= ra te  of production of ith species  
i 

u = mean flow velocity 

Ui = diffusion velocity of the ith species  

u i  = u t ui 

T C i  = 1 

c P C i U i  = 0 

1 

1 
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t 

The species  continuity equation does not have a simple f i r s t  integral  due to 
the fac t  that p i  i s  a complicated function of the flow variables.  

Mom e nt um E quat ion 

The momentum equation is 

du dp d 
p u z =  -z t , [ 1 4 P  t k)% 

which has the f i r s t  integral  

Energy Equation 

The energy equation i s  

which has the f i r s t  integral  

t z i pihiUi  = pouo(ho t$) =e (91) 

The quantity, qx, for a binary mixture of molecules and atoms may be 
writ ten as (Reference 20)  

= Four ie r  heating t Dufour effect 
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# 

where 

DaT = thermal diffusion coefficient 

Dam = binary diffusion coefficient 

- 
M = Mm Ma/(C,Mm t Ca Ma) 

X = thermal conductivity 

but, 

ua - um = (u  t Ua) - ( u t  Um) = ua -urn 

and 

c 1 PiUi = 0 

thus 

and the Dufour effect is seen to be of the o rde r  UaUm. 
the Dufour,effect is proportional to the square of the diffusion velocity and 
may be neglected, 

Stated otherwise,  

The energy equation becomes 

du dx i 
(ho t $)= % (92) 

Upstream and downstream of the shock all the gradients,  dT/dx,  
dv/clx and dCa/dx, just  vanish and the boundary conditions m a y  be evaluated 
in t e r m s  of the integration constants 

SID 6 5 - 9 3 3  



N O R T H  A M E R I Z A N  A V I A T I O N ,  I N C .  SPACE and INFORMATION SYSTEMS DIVISION . 

f rom equations (86) through (89), and equation (92), respectively.  
ditions a t  the upstream end point, x = -a, wi l l  be denoted by the subscr ipt  
( )ol, and the downstream positions, x = t c o ,  by the subscr ipt  ( )02. 

The con- 

Thermal  Equation of State 

F o r  the thermal  equation of state, using Dalton's Law of par t ia l  
p r e s s u r e s ,  the total p re s su re  of a mixture of different species  can be 
expressed as 

where 

Pi 

i 
- -  - KT = n . K T  

Pi m 1 

F o r  the case  of a pure diatomic gas, equation (93) becomes 

P = ( l t C a )  p- T = ( l t C a ) p R m T  
Mm 

(93) 

(94) 

where 

Caloric Equation of State 

The calor ic  equation of s ta te  may be an equation for  the internal energy, 
the enthalpy, o r  the specific heat. 
by (Reference 2) 

The enthalpy of the i th species  is given 

Pi 
hi = (ei - e o )  t -  

P i  
(95) 
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where e i  is the specific internal energy for  the ith species  

e =  i translation ' (ei)rotation ' (ei)vibration 

t r V 
e = e  t e  t e  i i  i i 

The quantity, e o ,  is the heat of formation of the ith species  and p i /  p is 
given by the thermal equation of state. 
e t ,  e t  , and e? a r e  derived f rom stat is t ical  thermodynamical considerations 
(Reference 3 )  

The equilibrium values for  

3 
i - 2  

e t  - - R ~ T  

e r  = RiT 
i ( 9 7 )  

where 

11::: = Planck's constant 

F o r  the case  of a n  ideal diatomic gas,  the a toms and molecules both have 
a n  average translational energy, 3 / 2  RiT, but molecules have, in addition, 
an  average  rotational energy, RiT, and vibrational energy which va r i e s  
f rom zero  to 1 / 2  RiT. Therefore ,  f rom equations ( 9 5 ) J  ( 9 6 ) ,  and ( 9 7 ) J  we 
obtain: 

5 
a 2  

h =-RR,T t D m  

1 V 
hm = TR,T t em 
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where 

0 
e = -D 

a m 

0 
e = O  m 

but, for  a diatomic gas, 

R = 2 R  a m 

resul t ing in 

h = 5 R  + D  a m m 

h = k  R T 
m m m  

where (h) is a function of temperature ranging between no vibrational 
excitation 7 /2  and completely excited 9 / 2  (Reference 4). The specific 
enthalpy for  the mixture  may be written 

Using the relat ion? Ci = Ca t Cm = 1 and ha, and hm'given by equations (99), 
1 

h = Ca [ 5 RmT t Dm] t ( 1  - Ca) kmR,T 

(101) 

km t (5  - km) Ca] RmT t CaDm 

Based upon the precedifig thermodynamic considerations and the 
equation of change, the transition propert ies  of the entropy function can be 
evaluated for  chemically inert  and chemically reacting flows, 
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ENTROPY TRANSITION PROPERTIES 

The specific entropy of the mixture  is given by 

TdS = de t p d(+) 

where 

e = 3RmT t CaDm 

Differentiation of equation (103) yields 

de = 3RmdT t DmdCa 

and eqLiations (104) and (103) then yield 

R, - -  - 3 T  dT +(+)d R T  C - (1 t 
dS 

a 

F o r  .the case  of chemically reacting equilibrium flow relation (81) 
provides 

[- ::*I 
exP 

PD C 2  
a 

1 -c - =- 
P a 

and 

m D 

m a 
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is then obtained. Under these conditions, the entropy function in 
equation (105) becomes 

dT = 3-t log dS 
E- T m 

Whence, by integration, we 

(108) 
(9) dCa t log (+I dC - (1 tCa) p dP 

a 
a 

obtain the chemically react ing entropy equation 

U 

R = 3 log T t Ca(l-21ogCa) - (l-Ca)lOg(l-C a ) 
m 

F r o m  equation (109) the transition propert ies  of the entropy function 
a c r o s s  the normal  Mach d i sc  of the rocket exhaust a re  given by 

s02 - ~- 

m R = 3 log (2) t log 

t (CO2 - G o $  1 t l o g ( k ) t  1 (1 tCO2)  l o g ( . )  

Equation (110) is plotted in Figure 3 of this repor t  fo r  two values of the 
m a s s  f rac t ion  parameter  Ca. 

F o r  the case  of chemically inert o r  frozen flows the mass fract ion 
pa rame te r  remains  invariant when transit ion through the Mach d i sc  
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Figure  3.  Entropy Production 

occurs ,  Thus, Co1 is identical with Co2 and under these conditions, 
equation (110) resu l t s  in 

s02 R - m = 3 log($) t (l+CJlog($) 

Equation (111) is  plotted in Figure 3 for  comparison between the two 

The sample calculations were  performed f o r  
cases  of chemically reacting and chemically iner t  flows, 
shown as a function of YM2. 
the following values of the m a s s  fraction parameter :  

The plots a r e  

col = 0.1835 

Col = 0.5050 

The results of the plots indicate that, f o r  the same initial mass fraction, 
the entropy increase in chemically reacting equilibrium flow is roughly double 
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that of the chemically iner t  flow for lower values of the parameter  YML. 
Moreover,  the entropy increase for equilibrium flow is effected, to a large 
extent, by the mass fraction parameter  whereas for frozen flow this effect 
is a lmost  nil. 
parameter  YM 
in F igu res  4 and 5, respectively. 

The transit ion properties of the velocity ra t ios  ve r sus  the 
2 f o r  chemically inert  and chemically reacting flows a r e  shown 

1 .o 

0.8 

0.6 

vol 

v02 

- 

0.4 

0.2 

a I I 
( Y M 2 ) 0 1  

Figure  4. Velocity Ratio ( V o l / V o 2 )  for Chemically Inert  F l o w  
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i i i i _ I  . 
1 5 10 50 100 500 lo00 0 

( YM2)  01 

1 .o 

0.8 

0.6 

vo1 
v02 
- 

0.4 

0.2 

F i g u r e  5.  Veloc i ty  Rat io  ( V o l / V o z )  for C h e m i c a l l y  Reac t ing  
(High T e m p e r a t u r e )  F l o w  
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V. SUMMARY AND CONCLUSIONS 

The investigation of propagation charac te r i s t ics  of a finite amplitude 
acoustic p r e s s u r e  wave, during the phase reported he re ,  has  been concerned 
with the qualitative identification of the regions of predominant entropy pro-  
duction r a t e s  in the rocket exhaust, The derivation of the forcing function of 
the radiating nonlinear wave equation (Section I) in t e r m s  of the dissipating 
quali t ies of the rocket exhaust (entropy production) exhibits a close relation 
between the forcing function and the energy equation a s  well as the equation 
of s t a t e  of t h e  mediurn. T h r s ,  within the frirr-ewnrk nf this ana-lysis; the  
mechanical conditions (conservation of m a s s  and momentum equations) are  
insufficient for  a mathematical  development of the problem a t  hand. 

The formal  derivation of the forcing function, a s  presented in this  
repor t ,  has the additional shortcoming of assuming the existence and conti- 
nuity of the dependent variables up to and including second derivatives in the 
region considered, This restriction l imits  the application of the derivation, 
unless  provisions a r e  made to  extend the formalis t ic  meaning of- der iva-  
t ion t o  processes  that exhibit highly i r r eve r s ib l e  fea tures  and disco inuous 

As a ma t t e r  of fact  it is  

within the 

MI; 
jump conditions in  the regions of interest .  
i r r eve r s ib l e  fea tures  and jump conditions, appearing i n  the 
exhausts,  that a r e  of greatest  interest ,  
by v i r tue  of the i r  contribution t o  entropy production i n  the flow field, 

Sections I1 and IIIof this report ,  d iscuss  the investigation of conditions 
governing the flow of the exhaust gas a f te r  t ransi t ion through an oblique shock 
has  taken place. The shape of the shock layer formed by the expanding gases  
emanating f rom the nozzle i s  determined by considering the reflection prop- 
e r t i e s  of the expansion waves upon hitting the f r e e  boundary. 
coalescence points along the boundary determine the initial shape of the shock 
region before the formation of the Mach disc,  

Their  

Like wi s e,  hyper s oni c the o r y  cons i de ra t  ions with i ni t i a  1 condition s 
assumed to  be known from oblique shock transit ion relations,  indicate the 
existence of an entropy layer  near  the axis of symmetry  in  which the 
t empera tu re  is high, the density low, and the p r e s s u r e  finite. 

It was a l so  found expedient, when considering the Mach disc t ransi t ion 
proper t ies ,  to  introduce chemical flow kinetics into our considerations. This 
was due to the appearance of dissociation phenomena in the exhaust gas, 
caused by the excessive temperatures  of the emanating gas and the high 
collision ra tes  of a toms and molecules during shock transit ion phenomena. 
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A comparison between the entropy production of chemically reacting flows t o  
that of chemically iner t  flows has  been attempted in Section IV. 

In the addendum to  this repor t  a mathematical  derivation of par t ia l  
correlat ion principles is presented to  be used as necessa ry  in  the subsequent 
investigations. 

Within the framework of this investigation, based upon the concept of 
dissipative phenomena, it appears  that fo r  the case  of high p res su re - r a t io  
rocket exhausts, the regions contributing most  to  propagation of a finite 
amplitude pressure  wave for  given init ial  conditions m a y  roughly be tabu- 
lated in the sequence of the i r  respective contributions a s  follows: 

1. Normal shock layers  (Mach d i sc s )  

2.  Oblique shock layers  

3. Viscous shea r  layers  and vortex regions,  

F r o m  consideration of the contributions of the normal  shock layer ,  it 
appears  that chemical reactions in the shock layer  itself, taking place due 
to  partially dissociated hot exhaust gas, a r e  of p r imary  importance; even 
for  low Mach numbers and a smal l  fraction of dissociated m a s s  the entropy 
production increases  significantly. Computations (F igure  5 )  indicate that 
the entropy production in the transit ion region is  m o r e  than doubled a s  soon 
a s  cr i t ical  p ressure  rat ios  a r e  reached, This would tend to  indicate that, 
barr ing the contribution of other t e r m s  in  the forcing function ( temperature-  
density product), the acoustic intensity of a hot exhaust should be a t  least  
th ree  decibels higher than that of a cold exhaust, the increase  being approxi 
mately uniform within the range of the parameter  ( YM2) shown in F igure  5. 

It also appears  that the entropy gain of the par t ic les ,  attained during 
t ransi t ion phenomena, pers i s t s  and i s  c a r r i e d  into the flow field by the 
s t reamlines ,  causing a high entropy gain of the fluid ( a s  the axis of the rocket 
exhaust i s  approached) behind the f i r s t  shock layer  formation (Sections I1 and 
111). 
in the transition phase, the nonequilibrium values will "freeze" on the 
s t reamlines  and the adjustment to equilibrium flow will take place by a sudden 
i r revers ib le  re lease  of the dissociation energy with a la rge  inc rease  of 
entropy, and a Mach number decrease  in the successive transit ion layer .  

This indicates that in the case  where chemical equilibrium is not attained 

The overall aspects of these phenomena will have to undergo individual 
analysis fo r  quantitative resul ts  and analytical predictions. 

- 48 - 
SID 65-933 



REFERENCES 

1. 

2. . 

3 .  

4. 

5. 

6. 

7. 

8.  

9. 

10. 

11. 

12. 

Hayes,  W. D. and R .  F. Probstein.  Hypersonic Flow Theory.  
New York: Academic P r e s s ,  Inc. (1959). 

Chernyi,  G,G,  ' 'Effect  of Slight Blunting of Leading Edge - of an 
I m m e r s e d  Body on the F low around it at Hypersonic Speeds, NASA 
Technical  Translation F- 35 (1960); t rans la ted  f rom Izvesti ia Akademia 
Nauk USSR, Otdelenie Tekhnicheskikh Nauk, No. 4 (1958). 

Cheng, H. K. Unpublished Notes. 

Sychev, V. V. 
Law Shock Wave, Prikladnaya Matematika' i Mekhanika, Vol. 24, 
No. 3 (1960) pp. 518-523; Translated Journa l  of Applied Mathematics 
and Mechanics,  Vol. 24, No. 3 (1960) pp. 756-764. 

"On the Theory of Hypersonic Gas Flow With a Power-  

Yakura, J. K. 
Hypersonic Flow, I t  Stanford University: Dept. of Aero. Engr .  Rep. 
No. 110, AFOSR TN-61-1271 (July 1961). 

"A Theory of Entropy Layers  and Nose Bluntness in 

F e r r i ,  A. "Application of the Method of Charac te r i s t ics  t o  Supersonic 
Rotational Flows, NASA Report No, 841 (1946). 

F e r r i ,  A. Elements  of Aerodynamics of Supersonic Flow. New York: 
Macmillan (1949). 

Hang, C. T .  and J. B. Peterson,  "Spreading of Supersonic J e t s  F r o m  
Highly Underexpanded Nozzles, I t  Report No, FM-TR-  175. 
Wooldridge Corporation ( 16 May 19 57). 

Ramo- 

Adamson, T. C. J r .  and T.A. Nicholas,  "On Theory  of J e t s  F r o m  
Highly Underexpanded Nozzles With Sti l l  A i r ,  T.  A. S. (Jan.  1959). 

Rove, E .  S. , e t  al. "Experimental and Theoret ical  Studies of 
Axisymmetr ic  F r e e  Je t s ,  ' I  NASA TR-R06 (1959). 

Shapiro. 
-9 Flow Vol. 11, New York: The Ronald P r e s s  Company(l913) .  

The Dynamics and Thermodynamics of Compressible  Fluid 

S e a r s ,  H. R. Ediber.  General Theory  of High Speed Aerodynamics,  
Vol. VI, Pr inceton University P r e s s  (1954). 

- 49 - 
SID 65-933 



N O R T H  A M E R I C A N  A V I A T I O N ,  INC. SPACE and INFORMATION SYSTEMS DIVISION 

13. 

14. 

15. 

16. 

17. 

18. 

19. 

2 0. 

2 1. 

2 2. 

2 3. 

24. 

2 5. 

Li, T.  Y . ,  "Recent Advances in  Nonequilibrium Flow in  Gas Dynamics, I' 
Rensselaer Polytechnic Institute Report. 
(AFOSR TN 60-597 (May 1960). 

R P I  T R  AE 6001 

Fowler ,  R .  H. , and E. A .  Guggenheim. Statist ical  Thermodynamics.  
Cambridge University P r e s s  (1956). 

Inger,  G. R . ,  and R. J .  Shanahan. "Nonequilibrium Centered Expansion 
of a Dissociated Supersonic Gas Flow, Douglas Report, SM-42492. 
Douglas Aircraft  Co.,  Inc. ,  Santa Monica, Calif. (Oct. 1962). 

Clarke,  J .  F. "The Flow of Chemically Reacting Gas Mixtures,  
Cranfield College of Aeronautics, Report No, 117 (Nov. 1958). 

Lighthill, M. J .  
Flow, Journal of Fluid Mechanics, No, 2 (1957) pp. 1-32. 

"Dynamics of a Dissociating Gas,  Part I, Equilibrium 

Clarke,  J . F . ,  "The Linearized Flow of a Dissociating Gas.  Journa l  
of Fluid Mechanics, No. 7 (1960) pp. 577-595. 

Dorrance,  W. H. Viscous Hypersonic Flow, New York: McGraw-Hill 
Book Company, Inc. (1962). 

Sugimura, T, 
Chemically F rozen  Flows, Mas ter ' s  Thes i s ,  University of Calif. 
(1964). 

"Shock Structure fo r  Chemical Equilibrium and 

Freeman,  N. C. 
Journa l  of Fluid Mechanics, Vol. 4, Pt. 4 (Aug 1958) pp. 407-425. 

"Non-Equilibrium Flow of a n  Ideal Dissociating Gas,  I '  

Gibson, W .  E. 
Flows, 'I ARS Journal  (Feb.  1962) pp. 285-287, 

"Dissociation Scaling f o r  Nonequilibrium Blunt Nose 

Gibson, W. E. and P .V.  Marrone. "Correspondence Between Normal-  
Shock and Blunt-Body Flows, The Physics  of Fluids ,  Vol. 5 ,  No. 12 
(Dec. 1962), pp. 1649-1656. 

Van Dyke, M.D. "The Supersonic Blunt-Body Problem - Review and 
Extension, ' '  Journal  Aero/Space Sciences, Vol. 25, No, 8 (Aug. 1958) 
p. 485. 

Glicksberg, B., "Application of Extended Plug Nozzle f o r  A i rc ra f t  J e t  
Engine Noise Suppression, I t  Second Quar te r ly  Report, Contract 
NO. FA64WA-5062, I. I. T. Research  Insti tute,  Chicago, Illinois 
(Nov. 9,  1964). 

- 50 - 

~ 

SID 65-933 



N O R T H  A M E R I C A N  A V I A T I O N ,  INC. SPACE and INFORMATION SYSTEMS DIVISION 

BIBLIOGRAPHY 

Cheng, H. K. 
With Blunted Noses,  Journal  Aero/Space Science, Vol. 26, No. 9 
(Sept. 1959) pp. 575-585. 

"Similitude of Hypersonic Real-Gas Flows Over Slender Bodies 

Eldred,  K.M. Noise Measurement of Four  Rotor Aircraft  Model Jet 
Nozzles, Paul  S. Veneklasen and Assoc.,  Los Angeles, Rep. 238-11-1 
(1958). 

Eldred,  K. M. WADC Rep. 57-354 (1957). 

Etkin, B., and H. S. Ribner. "Canadian Research in Aerodynamic Noise, 
UTIA Review No. 13, Institute of Aerophysics, University of Toronto 
(July 1958). 

Ffowcs Williams, J. E. "Some Thoughts on the Effects of Aircraf t  Motion 
and Eddy Convection on the Noise of Air J e t s ,  
Astr .  Rep, 155 (1960). 

Univ. Southampton Aero,  

Ffowcs Williams, J. E. 
Speed, ' I  Proc .  Roy. SOC, A. 

"The Noise F r o m  Turbulence Convected at High 

Ffowcs Williams, J. E. "An Account of Research Work Car r i ed  Out Under 
Contract NASl-32 17 Into the Mechanism of Noise Generation by Supersonic 
F lows , "  Contract NAS1-3217, BBN Job. No, 11131 (19 June 1964). 

F reeman ,  N. C. 
Flow, ' I  Princeton University, Report No, 466, AFOSR TN 59-635 (May 1959). 

"On a Singular Point in  the Newtonian Theory of Hypersonic 

F reeman ,  N. C, , "On the Newtonian Theory of Hypersonic Flow f o r  a Blunt 
Body, Princeton University, Report No,  467, AFOSR TN 59-634 (May 1959). 

F reeman ,  N. C. , and S. H, Lam, "On the Limiting Structure  of the Edge of 
a Hypersonic Boundary Layer With Very Cold F r e e  S t reams,  
University, Report No. 468, AFOSR TN 59-690 (May 1959). 

Princeton 

F reeman ,  N. C. , and S. H, Lam. "On the Mach Number Independence 
Principle  for  a Hypersonic Boundary Layer ,  
Report No. 471, AFOSR T N  59-728 (July 1959). 

Princeton Univer sitv, 

- 51 - 
SID 65-933 



/ 

N O R T H  A M E R I C A N  A V I A T I O N ,  I N C .  SPACE and INFORMATION SYSTEMS DIVISION 

Lees,  L. and T .  Kubota. "Inviscid Hypersonic Flow Over  Blunt-Nosed 
Slender Bodies, Journal  Aeronautical Science, Vol. 24, No. 3 (March 1957) 
p. 195. 

Lighthill, M. J .  
- SOC., Vol. 64 (1960) pp. 375-394, 

"Mathematics and Aeronautics, ' I  Journa l  of Royal Aero. 

Lighthill, M. J .  "On Sound Generated Aerodynamically, I . ,  Genera l  Theory, ' I  

Proc .  Roy. SOC. A . ,  Vol. 211 (1952) pp. 564-587. 

Lighthill, M. J .  "On Sound Generated Aerodynamically, 11. Turbulence as  
a Source of Sound, Proc.  Roy. SOC. A.,  Vol. 222 (1954) pp. 1-32. 

Lighthill, M. J .  
With Sound o r  Shock Waves, Proc.  Cambr.  Pil. SOC., 49, Pt. 3 (July 1953) 

"On the Energy Scattered F r o m  the Interaction of Turbulence 

pp. 531-551. 

Lighthill, M. J .  "Sound Generated Aerodynamically, Proc .  Roy. SOC. A, 
Vol. 267 (1962) pp. 147-182. 

Phill ips,  0. M. 
L a y e r s , "  Fluid Mech., 9 (1960) pp. 1-28. 

"On the Generation of Sound by Supersonic Turbulent Shear 

Powell, A. "On the  Generation of Noise by Turbulent J e t s ,  ASME Pape r  
59-AV -53 (1959). 

Ribner, H.S. "Aerodynamic Sound F r o m  Fluid Dilatations, A Theory of the 
Sound F r o m  Je t s  and Other F lows ,"  UTIA Report No, 86, AFOSR T N  3430, 
Institute of Aerophysics, University of Toronto (July 1962). 

Ribner, H.S. 
of Simple Sources, JJTIA Report No, 67, AFOSR TN 60-950, Institute of 
Aerophysics, University of Toronto (July 1960). 

"A Theory of the  Sound F r o m  Jets and Other Flows in  T e r m s  

Ribner, H. S. "Investigations of Aerodynamically Generated Sound, USAF 
Contract No. AF 49(638)-249, Final  Technical Report, UTIA Report No. 81, 
AFOSR 2 148, Institute of Aerophysics, University of Toronto (Jan.  1962). 

Ribner, H. S. "New Theory of Jet-Noise Generation, Directionali ty,  and 
Spectra, ' I  Journal of the Acoustical Society of Amer ica ,  Vol. 31, No. 2, 
(Feb .  1959) pp. 245-246. 

Ribner, H.S. 
UTIA Report No. 51, Institute of Aerophysics,  University of Toronto 
(Apri l  1958). 

"On the  Strength Distribution of Noise Sources  Along a Jet ,  'I 

52 

SID 65-933 

~ ~~ 



Ribner, H. S. 
of the Acoustical Society of America, Vol. 30, No. 9, 876 (Sept. 1958). 

"Strength Distribution of Noise Sources Along a Je t ,  ' I  Journa l  

Ribner, H. S. "The Noise of Aircraft ,  General  Lecture  Fourth Congress of 
the International Council of Aeronautical Sciences, Paris, France ,  
(24-28 August 1964) UTIAS Review No. 24, AFOSR 64-1310, Institute fo r  
Aerospace Studies, University of Toronto (Aug. 1964). 

Ribner, H.S. 
Shock Wave, 
Toronto (June 19 59 1. 

"The Sound Generated by Interaction of a Single Vortex With a 
UTIA Report No. 61, Institute of Aerosphysics,  University of 

Van Dyke, M. D. ,  and H. D. Gordon. "Supersonic Flow Pas t  a Family of 
Blunt Axieymmetric Bodies, ' I  NASA TR R -  1 (1959). 

- 53 - 
SID 65-933 

h 



ADDENDUM: PARTIAL CORRELATIONS AND RESIDUAL VARIANCES 

The appearance of a nonlinear forcing function in the aerodynamic noise 
problem formulation resul ts  in  a general t reatment  of the solution by means 
of s ta t is t ical  correlation principles.  (See Bibliography.) In the present  
formulation, a n  attempt is being made to obtain a s  much pertinent information 
a s  possible f rom extraneous sources and f rom the physical aspects  of the 
problem which conform to the present approach. 
pling multiple correlation coefficients, however, se rve  to generate mean  
s ta t is t ical  products which are  mutually independent and thus cause removal of 
variations due to higher o r d e r  random variables . i  These aspects  a r e  con- 
s idered  in the following development: s ince any random physical variable is 
suitable for  application to the following formulation, the random velocity 
function used he re  can be regarded as a representative quantity; i t a  IMP docs 
not contradict the generalization of the procedure to other  random variables.  

Certain aspects  of uncou- 

Two- and three-dimensional random velocity f ie lds  a r e  considered in 
this  derivation and a r e  generalized to any number of dimensions. The concept 
of two-dimensional par t ia l  correlations is t r iv ia l ,  except fo r  exceptional ca ses ,  
but i t  will be t reated he re  because of i t s  importance in the general  theory. 

THE TWO-DIMENSJONAL RESIDUAL VARIANCE 

Let  ui ( i  = 1 , 2 )  represent  two random velocity components so that: 

u1 = u 1 b 1 , t 1 ) ;  u2 = u 2 (5 2' t 2 ) 

where [ x l ,  t l ]  and [x2, t2] a r e  any points distinct f rom one another i n  the three 
dimensional space- t ime field. Under these conditions the three  second-order 
expectations of the random variables ul  and u2 a r e  given by the integrals 

'Grainer, H. Mathematical Methods of Statistics, Princeton University Press (1961). 
Charatier, C.V.L. Vorlesungeii ueber die  Grundzvege der Mathematischen Statishe. Lund (1931). 
Jeffreys, H. Theory of Probability. Oxford (1939). 
Feller, H. An Iiitroduction to Probability Theory and its Application, Wiley (1962). 
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W 

the distribution frequency function of the two random 
variables u1 and u2. 

If the means,  m l  and m2, a r e  assumed to  be ze ro ,  then relations A .  2 
represent  the quantities which define the correlat ion coefficient p12  between 
the two variables,  which m a y  be writ ten 

However, if the means ,  m l  and m2, a r e  different f rom zero ,  relation 
A .  3 does not hold t rue  since the independence of the two var iables  u1 and u2 
will not cause p12 to vanish-a fact  upon which the concept of the correlat ion 
is based. 

Next, consider the straight line in the u1 and u2  planes.  

>;C 

u = P 1 2 U 2 +  cy 1 

where p lz  and CY a r e  constant pa rame te r s  and the subscr ipts  of pi denotes 
that i = 1 is the independent variable and j = 2 is the variable to wkich the 
coefficient is attached. 

1J 

Now form the difference 

>;< 
u - u = u l  - p l 2 U 2  - c y  1 1  

which is the difference along the u1 direction of a par t ic le  of mass dp a t  
(u1, uz)  and the s t ra ight  line A. 4. 

T o  find the best  estimate of the random variable u1 in t e r m s  of the 
line A. 4, consider the mean  square regression:  

It i s  convenient a t  this point to introduce the m e a n  var iables  and G2, 
assumed constant, and write relation A. 6 in  the fo rm 
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Upon expansion, relation A.7 becomes 

2 
E [ ( u1 - u r  ) I = E (( u1 - P f2 E 1 (u2 - C2)' 1 t (El - p 12Ti2 - a) E (1) 

Again denoting the m e a n  moments of the distribution by X i  and Ai, 
(i = 1, 2 )  : ( j  = 1,2) for  first and second moments  respectively and noting that ,  
by definition of the mean,  a l l  moments Xi = 0 ( i  - 1, 2) ,  relation A.8 m a y  be 
writ ten 

where the las t  expression i s  a consequence of the fact  that E (1) = 1. 

In  o rde r  to find the coefficients P12 and CY which will make the expres-  
sion in A.9 a minimum, the variational principles will be applied. Here ,  
however,  both Q and p a r e  parameters  which do not depend upon their  der iva-  
t ives.  Hence, the variational operator 6 becomes simply the differential 
operation i tself .  
involved, the following expressions a r e  obtained: 

Thus by differentiating with respect  to the two pa rame te r s  

2p12 X Z 2  - 2X12 - 2 (Til - p12T2 - C Y )  E2 = 0 

(A. lO)  
2 ( T i 1 - p l 2 T i 2 - a )  (-1) = 0 

F r o m  the second equation, 

- (ii, - P12U2 - C Y )  = 0 (A.  1 1 )  
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and so  the f i rs t  equation i n  A.10 becomes: 

'1ZA22 - = O 

f rom which it may be infer red  that 

=- 
'12 A Z 2  

SPACE and INFORMATION SYSTEMS DIVISION 

(A.12) 

(A. 13) 

Relation A.13 represents  the value of the coefficient p which will make  
the mean square in A.9 a minimum. 

F o r  future generalization, the der ived expression will be considered i n  
a m o r e  concrete form.  F o r  this purpose,  the second-order-moment 
matrix M given by 

(A.  14) 

is introduced. 

Now if  the determinant of this ma t r ix  is denoted by the symbol A and 
the cofactor of A . .  by Aij, then 

'J 

A = c i j  x l i  x 2 j  

A = €  € A  i j  ik j ke 

( A .  15) 

Note that relation A.13 m a y  be written 

€ E X  

€ € A  
12  % 1 2i l j  i j  

1 li l j  i j  
- - =  - - = -  (A.  16) 

= A the preceding equation l 1 2  21 '  
Moreover,  because of symmetry ,  

m a y  be written in the form 
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E E A. 

E E X  
- A 21 %2 - li 2j i j  

A22 li l j  i j  
- - = - - - -  

'12 h 2 2  (A.17) 

The notation i n  A.17 will be used a s  the m o r e  symmetr ic  one since i t  
can be generalized to the form 

(A.18) 

The above relations will also be expressed in t e r m s  of the correlat ion 
coefficient of the two var iables  u1 and u2. 
coefficient , 

By definition of the correlat ion 

A 1 2  -- - A 12 
p 1 2  - q 5- u p 2  (A. 19) 

where the t e r m s  ui a r e  the variances of the respective random variables;  
hence 

2 2 
2 

- - u ( J  - u l ;  A 2 2  = u A 1 2 -  p12 1 2; 

Relation Ai17 may  also be writ ten 

p12 - - - - -  
u p 1 2  2 1 2 u u  2 2  p12 

Introducing the determinant 

and the cofactors 

= E  E 
' i j  i k  j l  ' k l  

(A.20) 

(A.21) 

(A.22) 

(A.23) 
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gives 

- p12 

p l l  

Generalizing the subscr ipts  yields 

u. . P . .  * .  

(A.24) 

(A.25) 

It should be noted that the summation convention will be implied only i n  
connection with the tensozia.1 notation, e.  g., ' i jk i j k ,  etC., and not with the 
expressions for  determinants and cofactors. 

Thus,  i n  a t  least  two dimensions the mean  variance of the expression 

takes on i t s  minimum value when the coefficient P l 2  becomes 

o r  generally 

(A.26) 

( A .  27) 

(A.27) 

Referring to relation A . 9  where i t  was shown that 

Moreover ,  for a minimum m e a n  square 

- - -  - p12 - I  , (ii- P12U2 - a )  = 0 
u2 p l l  

'12 = - - - "1 1 

- 60 - 
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U 1 p 1 2  u2 p 1 1  u1 p 1 2  1 2 - u u  
l 11  x 1 2  - - 

2 2 
A =  - 

A 2 1  l 2 2  

H e n c e  r e l a t i o n  A.28  b e c o m e s  

2 3 p12 “2 

u2 = ul 

*12 

m i n  %1 
12  

rt. 

E (i.1 -uLf I = A l l  t - h 2 2 t 2 -  

p 2 1  u2 u2 p 2 2  42 p 2 1  u2 u2 

wh ich  y i e l d s  

p 2 1 ‘ 2 c r  

(A.30)  

2 2 
1 2  12  

2 -  +- - 
22 = l 1 1  x 2 2  

. 2  
12 

h - -  
= A l l  x 2 2  

E i .  h l i  x 2 .  

min l 2 2  *ll ‘ l j  ( l j  ‘ij 
A l l X 2 2 - h 1 2  =-- A - 

( A .  3 0 A) 

(A.31)  

M o r e o v e r ,  i n  terms of the  c o r r e l a t i o n  matrix, 

o r ,  i n  t e r m s  of A.30A, 

3 

2 .1, 6 

E ( u l  -u;) = p 11 u1 

2 2 2  
12 =2 

-Y 
L 

=2 

2 2 P  
u -  

p l l  

2 
U P  

(A.32)  

s i n c e  P - - p22 = 1. 11 
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Hence 

(A.33) 

In t e rms  of the correlat ion coefficient p 12 = p 21, relation A.33 
becomes 

2 
I;.:(l-p;2) (A.  34) 

Hence, when p 12 = *l ,  it i s  when the variables a r e  perfectly cor re la ted  
that the mean square variance of the above expression vanishes. 
other hand, when the two variables a r e  independent, p 12 = 0 and the m e a n  
var iance is the total  variance of the var iable  u1. 

On the 

Consider now the line of best  fit given in accordance with previous 
assumptions by 

:: 
u = p 1 2 u 2 +  a ;  

1 
(A.35) 

f rom relations A . l l . a n d  A.17 

- 
CY = u1 - P l 2 U 2 ;  

(A.36) 

% 2  - u1 p12 

1 u2 p l l  
= - - - - - -  

p12 

where the te rms  Tii, i = 1 , 2  a r e  the m e a n  velocit ies.  

Hence relation A.35 may  be writ ten 
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o r  alternately 

J, ‘8- h12 - =1 p12 - 
( u z - u 2 )  = - - - ( u 2 - u 2 )  u - 5  = - -  

*ll =2 p l l  
1 1 

Generalizing the preceding derivation, 

( A . 3 7 )  

( A . 3 8 )  

Specifically considering the line of best  fit of u2 with respect  to u1, i t  
can be deduced f rom relation A . 3 8  that 

( A . 3 9 )  

Hence the two possible combinations in two dimensions a r e  given by 

(A.40) 

J. .a- =2 p21 

=1 p22 
u - 5  = - - -  

2 2 

1 - u - u  = t -  
2 

(r - >:: 
u 12  ( u 2 - u 2 )  1 1  

(A.41) 

Hence the equations f o r  the two regression lines of best  fit a r e  
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- - u - u  1 - 2 2  u - u  

(r 

1 

1 u2 - p 1 2  

(A.42) 
- >k - 

2 u - u  1 2  = -  1 u - u  1 
~ 

2 u 1 12 U 

Both lines pass  through the center  of gravity o r  the mean  velocity point 
(El; C2). They can never coincide unless p = *l. 

When p = k l ,  the whole m a s s  of the distribution i s  situated on a straight 
line given by any one of relations A.42. On the other  hand, when p = 0, 

::c - 
(A.43) 

)I( - 
1 1' 2 2 u = u ' u  = u  

and the l ines become paral le l  to the axes and pass  through the center  of 
gravity. 

It will now be shown that the residual variance i s  completely uncorre-  
lated with any of the subtracted var iables .  Consider the quantity 

(A.44) 

Since the variable u2 i s  subtracted from the variable u1 the expectation 
- a )  is  given by A.44 and i t  should be z e r o  i f  no correlation exis ts .  of (u1 - 

Put  relation A.44 in the form 

This obviously becomes 
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- t Yi E ( u l  -E l )  - P12u2 E (u2  - u2) 2 

+Ti (a - p l 2 T i 2 - a ) E ( 1 )  
2 1  

and since all f i r s t  o rde r  means  must vanish and E (1) = 1, then 

I 1 2 .1  - - 
E I U P 1  -P12'2 = - p 1 2 i 2  E (u -c 2 1  ) 

-t E2 (E1 - P12U2 - Q ) (A.45)  

Now for minimum value,  the previously derived relations are  
introduced: 

- A 12 
- f f )  = 0; p,, = - - 

*11 
(G1 - P12U2 

Hence relation A.45 may be written 

(A.46)  

(A .47)  

Hence i t  i s  iiiferred that the residual variance of A . 4 5  vanishes identically. 
F r o m  the preceding derivation, i n  accordance with A.47 ,  it  i s  a l so  infer red  
that 
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2 = E [ ( u 1 - u 1 ) ( U 2 - C 2 ) ]  - P 1 , E [ ( U 2 - E 2 )  ] 

= E 1(u2 - u2) [ ( u l  - u l )  - P12 (u2 -U2)l l  
I min 

- - 

(A.48) 

Hence i n  all future generalizations the constant (Y can  be dispensed with and 
by r e fe r r ing  all var iables  ui to their  mean the l ine ,  plane o r  hyperplane of 
the c loses t  fit can be generated by the relation 

n 

k PklU1;  
- (A.49) 

1 = 1  

with 1 # k. 

T he p r e c eding cons ide ra t  ion s imm edi at  e ly 

E u ( u -  1 2 1 P12U2)lmin 

stipulate that 

( A . 5 0 )  

where i t  has  been a s sumed  that the var iables  ui ( i  = 1 , 2 )  a r e  r e fe r r ed  to the i r  
means  Ei respectively,  

Thus 

2 - 
= E l ( u l  -E1) [ u1 - u l  - P l 2 ( U 2  - u 2 ) ]  1 

E I u1 - b U 2  - 0 ) J r n i n  

( A . 5 1 )  

Moreover  the above deductions a r e ,  a s  has  been shown, a consequence of the 
derived important principle that the residual  var iance  of a random var iab le  
is completely uncorrelated with any of the subtracted var iab les .  
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THE THREE-DIMENSIONAL RESIDUAL VARIANCE 

In sequence to the previously considered two-dimensional random 
velocity field, let  ui (i = 1 , 2  , 3) be three random velocity components such 
that 

u = u1 ( z l , t l ) ;  u = u (5 t ); u3 = u (5 t ) 1 2 2 2 ' 2  3 3' 3 

Moreover ,  let  Tii (i = 1 ' 2 ,  3)  be the respective mean  value of the 
veiocity ui and then form the difference 

(A.52) 

(A.53) 

Consider the minimum expectation of the m e a n  square  

The complete analysis of the previous section will now be re-der ived for the 
case  of th ree  random variables  and the derivation generalized to higher o r d e r  
dimensions.  

Thus relation A.53 may  be written in the fo rm 

Hence 
mean  and E 

i- [E1 - P12T2 - P13T3 - Q I 2 E  (1) 

( A .  55) 

since a l l  the mean expectation E (ui - Ti) = 0 by definition of the 
1)  = 1 ,  the above variance can be writ ten i n  the form 
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(A.56)  

Now i n  o r d e r  to find the c o e f f i c i e n t s  Pij and CY for a m i n i m u m  va lue  of 
the above  e x p r e s s i o n ,  the v a r i a t i o n a l  principle is a p p l i e d  for each v a r i a b l e  
s e p a r a t e l y  t o  get 

- 
2 (Tl - p 12E2 - p 3u3 - CY ) ( -  1) = 0 

(A .57)  

Applying t h e  last r e l a t i o n  t o  the first two y i e l d s  

'12'22 -t '13'23 = '12 

'13'33 '12'23 - '13 
- 

or  

'22'12 "23'13 = '12 

(A.58)  

T h u s ,  t h e  following i s  i n f e r r e d :  

1'12 A 231 1'22 '121 

- 68 - 
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A =  

Now i n t r o d u c e ,  as  b e f o r e ,  the d e t e r m i n a n t  matrix 

21 ‘22 ’23 
A 

‘31 ‘32 ‘33 

(’11 ‘12 ‘13 

‘11 ‘12 ‘13 

- 
A =  A 21  ’22 ’23 - 

2 
’11 ul ’12 u1 u2 ’13 u1 u3 

’21  ul u2 ’22 u2 ’23  O2 u3 
2 

a n d  t h e  c o f a c t o r s  

‘ =  

U n d e r  t h e s e  condi t ions  t h e  coef f ic ien ts  p i j  a re  given by 

’21  ’22 ’23 

A13 = - -  =-a %2 

’12 A l l ’  ’13 *11 

(A.60)  

(A .61)  

(A.62)  

o r  

E X A  E A l k l  ‘3mn k m  ‘ i n  

l k l  ‘ l m n  k m  ‘ I n  

- - -  - l k I  ‘2mn km I n  

l k l  ‘ l m n  km I n  € A A ’ ’13 E A p12 - - 

( A . 6 3 )  

M o r e o v e r  

(A .64)  

H e n c e ,  i f  
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then, with the respective cofactors P i j ,  

A , ,  = u 2  U 2  (A. 65) 2 2 
2 3 p 1 1  

- 
A12 - ul c2 u3 P12; A13 = u 1  u2 u3 P13;  

Hence relation A.63 may also be put in t e r m s  of the correlat ion coefficients: 
-3 
L 

- %2 - O-1 u2 u3  p12 - u1 p12 - _ -  
p1 1 F 2  p l l  

p12 - -- A1 1 - - u 2  u 2  
3 

and a l so  

- '13 - 1 '13 U 

u 3  p l l  
' 1 3 - - -  11 - - - -  

Hence generally i r respect ive of dimensions,  

U P  

U P  

i i j  

'ij 'ii j ii 

A 
- i j  - - -  - - - - -  

(A. 66) 

(A. 67) 

(A. 68) 

where no summation convention is used in the subscr ipt  of the cofactors.  

Now consider the residual variance given by 

F o r  a minimum, i t  is necessary  that in accordance with A.57 and A.57 
and A.68, 

' 2 p  12 '13 '23 

with the t e rms  p i j  as  given in A. 68. 
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(A. 71) 

But 
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This  y i e lds  

1 
A )  - 

E ( q  1 . 2 3  l 2  m i n  - - *l l  [("ll'll -t n12 '12 % 3  13  

1 
t- A 

11 ( A l l  5 2  '12 A13 '13 

-i- A A h t 1.1 11 ;2 
12 12 22 13  13  33 

2A12 '2311 
J 

1 
E - 

A l l  '11 f A 1 2  '12 ' A13 '13 = " i j  'ij - -  2 pg ' j r s  'pr ' g s  " i j  

= E  ijk Ali  A Z j  A3k = A 

M o r e o v e r  , 

11 A12 '12 ' "11 *13 '13 ' *12 A12 '22 '13 h 1 3  '33 
A 

- ' 2A12 *I3 '23 - A12*l j  'j2 ' *13 A l j  'j3 

( S u m m a t i o n  convent ion used  .) This  becomes :  

*12 A l j  'j2 t A 1 3  A l j  'j3 j r s  ' 2 r  A h  2 j  3 s  

(A. 72) 

(A.  73) 
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Noting that in all t e r m s  of the l a s t  expression the subscr ipt  2 is  
repeated, a determinant expression is obtained whose two rows o r  two 
columns a r e  identical. 
repeated subscr ipts ,  i .e.,  subscr ipts  2 and 3 in A. 73. 

Hence the above t e r m s  vanish identically fo r  all  

It follows immediately that relation A. 7 1 becomes 

Moreover ,  i t  the residual  var iance is considered, 

(A .  74) 

Now, using relat ions A.68 in this expression yields the minimum 
v a r  i anc e : 

1 1 *13 - 
t- '13 -A [.,l '11 tA12 '12 tA13 '13 

= A l l t  %2 '12 

5 1  A1 1 1 1  

A - - -  
5 1  

(A.  76) 

Hence it is inferred that 

2 
+ ( u l  - P 1 p 2  - P13U3 -a) (A.  77) 
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This shows that the subtracted variables have a vanishing var iance 
This can also be seen by considering as stipulated above. 

1 
E 

1 _ -  
- 2 123 [‘ j r s  ‘2r ’2 ’351 -t 2 E 132 [ ‘jrs ’31- ‘ 2 s  ‘2j 

- 
( a. 78) 

due to repeated subscripts 2 and 3 .  

u ,,,,,,1:-:,, 4.- L:-L--  -._---^--I 

i L = I A \ . C ; ,  S c L i c A  a A i L u i g  L u  iiigiici d ; l l ~ e l i D ; u ~ i ~  w e  agaiii deduce tilai the 
residual  var iance of any subtracted var iable  is  uncorrelated and thus 
it must vanish identically. 

Hence it has been shown that 

fo r  i = 1 A - 
1 

0 f o r i = 2 , 3 ,  . . . .  
( A .  7 9 )  

This relationship in t e r m s  of the correlation mat r ix  yields 

- - - A =  E ijk A . .  ij A 2 j  A 3 k  - ( ‘ i jk  P l j  P Z j  P 3 k )  U l  u 2  u 3  r i  uj U k  

( A .  80) 

ijk ‘ l i  ‘2j ‘3k 1 -  - ‘1 u 2  u3 2 p  

i j ’  \vhere P is  the determinant of the correlation mat r ix  p 

On the other hand, consider the cofactor 

E 1 1 A =  - E E = -  E 
1 

11 2 l jk  l m e  ’jm ’ k l  2 l jk  1mP ’jm pkP(‘j urn ‘k 

( A .  8 1) 
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Now the s u b s c r i p t s  j m  and k I  c a n  t a k e  on two v a l u e s  on ly ,  2 and 3 ,  
s o  t h a t  t hey  f o r m  the following combina t ions  ( m  f I: j f k): 

m = 2;  P = 3; j = 2 ;  k = 3 ;  2 2  
u L  u 3  

m = 3 ;  I = 2 ;  j = 2 ;  k = 3 ;  2 2  
u2 u3 

(-4.82) 

m = 2 ;  P = 3;  j = 3 ;  k = 2 ;  2 2  
u2  u 3  

111 = 3 ;  I =  2 ;  j = 3;  k = 2 ;  
2 2  

u2  u3 

Hence  

(-1.83) 1 E 
1 - = E  

'11 2 l jk  l d k  'lm! *kl 1 m P  'jni '1cI 

and  

E [ u 1  ' l l , 2 3 . . . ]  = 

2 2 2 A  

u2  u 3  % i  

u3 
2 2  

2 
1 

= u  
A 2 

1 
- =  lJ 

1 

(-1.84) 

which f o r m u l a e  m a y  b e  g e n e r a l i z e d  to n diii-lc>nsions. 

N o w  the c o r r e l a t i o n  bet\\.een the  \ rar iables  111 and u~ i s  m r ~ a s u r e c l  b y  

Ho\\-ever if ill and 112 a r e  considerccl  in con-  
the  c o r r e l a t i o n  coe f f i c i en t   pi^ \vhicli i s  soii-letinics ca l l ed  the. t o t a l  c o r r c l a -  
t ion coefficient of 111 and 112. 
junct ion with 11-2, f u r t h e r  v a r i a b l e s  113, 114. . . . . , . t i I1 ,  the \ - a r i a t ion  of t he  
r e m a i n i n g  v a r i a b l e s  i i i ay  be  esan-l ined.  C o n s i d e r  no\\. t h e  r e s i d u a l s  

11 
P I 1 1  II 

- p i ,  1l3 - p , ,  L14 - . . . . . . . . .  " 1 . 3 4 . .  I 
= 

11 
f i l l 1  I-l 

- P 1 3  113 - p 14 114 - . . , * . . . . . = c1 " 2 . 3 4 . .  L 
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In accordance with the previous derivation, these residuals  r ep resen t  
those pa r t s  of the variables u1 and u2 respectively which remain  af ter  
subtraction of the best  l inear estimates in t e r m s  of u3..  . . . . . . . . . un* 
the correlat ion coefficient between these two residuals  may be regarded as a 
m e a s u r e  of the correlation between u1 and u2 af ter  removal  of any pa r t  of 

un. the variation due to the influence of the remaining var iables  u3, u4. . . . . . . 
The coefficient of the residuals  in A. 85 will be r e fe r r ed  to as the par t ia l  
correlat ion coefficient of u1 and u2 with respec t  to u3, u4.. . . . . . un, and 

. . . . . n' denoted by the notation P12. 

Hence, 

Hence, by A. 85 

(A. 86) - - E 171.34.. . n '2.34.. . n I 
I J E 17;. 34..  . n I'I'E.34 . . . .  n 

'12.3.. . . . n 

which i s  a n  ordinary correlat ion coefficient between two random variables  
A. 80. 
four-dimensional case  and generalized immediately to .the case  of n -  
dimensions.  Thus let  u l ,  u ~ ,  u3 a n d  u4 be four random variables.  Then 
consider the correlat ion 

F r o m  relation A. 86 the above coefficient will be derived for  the 

n - (A.  87) 
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1 Thus 

12 - '13'23 - '14'24 - '23 '13 - '24'14 ) = A  
E( '1. 23q2. 34 

Hence for a minimum it i s  necessary  that 

= o  - '23 ' '23'33 ' '24'34 

= o  - '14 ' '13'34 ' '14'44 

'23'34 ' '24'44 = '24 

'13'33 ' '14'43 = '13 

'13'34 ' '14'44 = '14 

- 7 6  - 
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'14 '44 

'33 '43 

'34 '44 

Solving the above for the t e r m s  p gives i j  

'34 '14 
p .  = 

14 
'33 '43 

'34 '44 

1'23 '43 

'24 '44 
- - 

p24 
'33 '34 

'43 '441 

'33 '23 

'34 '24 

'33 '34 

'43 '44 

Now consider the m a t r i x  

'11 '12 '13 '14 

'21 '22 '23 '24 

"31 '32 '33 '34 

'41 '42 '43 '44 

A =  

(A.92) 

(A.93) 

(A.94) 

Thus if  A i j  k ldeno tes  the cofactor determinants of the elements  i j  
and kf respect ively,  i t  i s  deduced from A.92, A.93 and A.94 that 

'11.32 - '1 1.23 - -  - - -  
1.22 %.22 '2 3 

- '1 1.24 

A1 1.22 '24 - - 
(Equation A.95 cont next page) 

(A. 95) 
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- A 2 2 .  1 3  - -  
A22.11 13 

- A 2 2 .  14 - -  
A1 1 .22  14 (A.95)  

Subst i tut ing r e l a t i o n  A.95  i n  A.88  g ives  

'11.24 '14 '22.13 
'23 

'11.23 '13 

E ('1.34 '2.34) = [ '12+ '1 1.22 '11.22 A22.11  

'22.13 '11.23 
'33 A t  

'22.14 t 
! 2 2 . 1 1  24 A22.11  A11.22 

A '22.13 A 11.23  
'22.13 11.24 

t A x34 *22.11 %1.22 '33 
A22.11 11 .22  

A '22.14 A 11.23  
'22.13 11.24 

'4 3 t 
A22 .11  A11.22 h34 %2.11  '11.22 

A 
I '22.14 1 1 . 2 4 ,  1 

R 4 4  J T 

A22.11 '11.22 

Now, noting tha t  A11.22 = A22.11,  put r e l a t i o n  A .96  in  the form 

1 1 
A [ '11.22 '22.13'23 

h A 
-t '11.22 22.14 '24 "11.23 22.13 '33 

t 
A11.22  1 1 . 2 2  

"11.24 '22.13 '34 "11.23 A 22.14 '43 

I A 
-t '11.24 22.14 '44 
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'2;. '23 A 24 

- 
'1, - '32 l 3 3  '34 

'42 '43 '44 

., W 

- 
A 2 2  - 

T h i s  y i e l d s  

4 

11.23 '13 "11.24 '14 - 2 ' i j*a j . l l -  - *21 - '12 
j = 2  

(A.  98) - - - + A  
*11.22 '12 

s ince :  

'12 '13 '14 

by r e f e r e n c e  to r e l a t i o n  A.94.  
A.97 g i v e s  

Sons ide r ing  also t h e  second  e x p r e s s i o n  i n  

(A.  99)  

A22'13 1'11.22 '23 '11.23 '33 ' '11.24 '43 1 
"22.14 ('11.22'24 -t '11.23 '34 ' '11.24 '441 = (A.100)  

4 

A22.13 1 ' l l .2 j  A3atA22,14 '11.2j '4j = u 
j = 2  j = 2  

a n d  both e x p r e s s i o n s  van i sh  iden t i ca l ly ,  s i n c e  t h e  s u b s c r i p t  j i s  summed over 
2,  3 a n d  4,  giving 

' 13  ' 14 '1 1 

x33 x-  (A .  101)  
' 3  1 

A 4 3  '44 '41 

54 

so tha t  the t e r m s  '22, '23, and  A24 a r e  r e p l a c e d  i n  A11 by '23, A33 a n d  h34, 
which  is iden t i ca l  with A32, A33 a n d  '34, and  so t h a t  t h e  two r o w s  i n  A l l . z j  
A3j b e c o m e  iden t i ca l  and the  d e t e r m i n a n t  v a n i s h e s .  
X4j. H e n c e  r e l a t i o n  A.97 b e c o m e s  

S i m i l a r l y  for A1  1 .2 j  
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C o n s i d e r  next t h e  e x p r e s s i o n  

(A. 103) 

- 
- '11 '13 '13 - '14 '14 

But it i s  a l s o  t r u e  tha t  

- '22.13 

'13 - '11.22 
(A. 104)  

- - '22.14 

'14 '11.22 

H e n c e  

1 

11.22 

- 
- A  

*11.22 '11 -t '22.13 ' 1 3 t h 2 2 . 1 4  A 14 J ( A . 1 0 5 )  

1'22.11 '11 ' '22.13'13 "22.14 '14 1 
R e f e r r i n g  t o  r e l a t i o n  A.101,  i t  is noted  tha t  t h e  above  is equiva len t  t o  

subs t i t u t ing  f o r  h l l ,  '31 a n d  A41 the  t e r m s  '11, '13 a n d  '14, which  a g a i n  
leave A22 unchanged. Hence  

jk 2 

Genera l i z ing  to  r e l a t i o n  E ( 7  2 3 4 )  g ives  

- 8 0  - 
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.. 

‘11 ‘12 ’13 

p21 ‘22 ‘23 

‘ 3  1 ‘32 ‘33 

Hence cons 

. 

d e r  ng the par t ia l  correlation coefficient 

i t  follows f rom A. 102, A .  106 and A .  107 that 

*11.22 

In t e r m s  of the correlation coefficients, 

A 12 

2 p1 1 

*11.22 p11.22 
= u  

2 p22 = u  h22 

A 1  1.22 p11,22 

Hence 

- p12 
‘12.34 p l l  p22 

- -  

F o r  the case  of th ree  dimensions,  considering the matrix 

(A. 108) 

(A .  109) 

(A. 110) 

( A . l l l )  
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i t  follows that 

= - (P23P31 - p ) = P - P P (A.112)  
'23 '21 

12  1 2  1 3  23  -P12  = 
'33 '31 

since P 33 = 1; a lso  

p l l  = '22 33 - P 23 P 32 = (1 - P 2 i )  

'22 = '11'33 - '13'31 = - '1;) (A. 113) 

Hence for the three -dimensional case  the correlat ion coefficient 
becomes 

(A.  114) 

and s imi la r ly  for other dimensions,  

It is noted that in the case  of uncorrelated var iables ,  s a y  when 
P13 = P23 = 0, then 

- 
p12. 3 - 5 2  

and the par t ia l  correlat ion coefficient is equal to the total correlat ion 
coefficient. 

(A .  115) 

Now consider briefly the definition of a multiple correlat ion coefficient. 
The residual  is defined b y  

#< 

?1.23.. . , n = u1 - P i j U j  = (ul  - ul) (A. 116) 
j =2 
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where 

P i j U j  
::: 

u =  
j = 2  1 

Now among .Ir a l l  l inear combinations of ui, i = 2. .  . . . n, i t  is the 
coefficient UT which has the maximum correlat ion ( o r  a minimum value) 
with respec t  to ui. 

The correlat ion coefficient 

i i i i  
' l ( 2 3 . .  . . . n) = 

(A. 117) 
E(u. 

(A. 117) \ 1 1 1  

' l ( 2 3 . .  . . . n) = 

is the m e a s u r e  of correlation between u1 and the totality of all the remaining 
variables.  
coefficient between u1 and ui ( i  = 2, 3 . .  . . . . n). 

This coefficient wi l l  be referred to as the multiple correlat ion 

Consider now the quantity 

A 
= - q 

by previous derivations. Also, 

E ( u ~ )  = E(u  u %) = A 11 1 1  

A ) = A  - -  
All  - b. 3 E (uy2) = E ( u  u 1 1  

(A. 118) 

(A. 119) 
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- c 

Hence 

'l(234. . n) 

A 
- n,, 

J T + q  
Al ln l l  -A 

Al 1 pyF (A. 120) 

This yields 

'1( 23. . . n) 

Hence 

for general  application in n-dimensions. 

(A. 121) 

. 

. 
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